A washing station equipped with brushes to remove fooling on boats

Using the same principle as car washes, a Swedish company has developed a machine that cleans the hull of boats using moving brushes. It allows to remove the fooling on the hull and is ecological, because it avoids the application of antifooling paints, harmful for the environment.

All boats are confronted with fooling, this natural phenomenon of spontaneous colonization of the submerged part of the hull by different types of organisms (bacteria, unicellular algae, green algae, etc.). It makes boats difficult to maneuver and increases the fuel consumption of motorized ones. To delay this process, the most commonly used technique is to apply antifooling paint to the hull. This contains biocides and is therefore harmful to the environment. Its use is furthermore limited by decrees. Faced with this problem, the Swedish company Rentunder AB has developed an alternative solution inspired by car wash stations.

A washing station equipped with brushes to remove fooling on boats

The process is purely mechanical and is based on brushes, the rotation of which removes the fooling. Installed in ports, it is in the form of a U with floating pontoons arranged on three sides. The boat enters through the open one, then a door closes behind it, according to the same principle as the sectional doors of car garages. Horizontal brushes are then positioned on each side of the hull to clean it and automatically adapt to its shape. This process is suitable for boats not exceeding 6 meters in length and a draft (vertical distance between the waterline and the bottom of the keel) of 2.4 m. An additional brush is also used to clean the waterline, and under the hull, brushes mounted on jacks have the function of cleaning the keel.

A retention basin is positioned under the brushes to collect the waste which is then pumped, then filtered, before being evacuated to a specialized sorting centre. “Initially, chips of antifooling paint come off with the organisms, but the long-term objective is to stop using paint and clean the hull regularly with this machine,” explains Gaël Minier, President of G&G Boatwash, the company that imports this equipment into France and several neighboring countries.

The washing station can adapt to the depth of the ports

This equipment won the innovation competition at the last Paris boat show in the Service category. For the moment, only one machine is installed in France, in Les Sables-d’Olonne. It was first assembled and tested in Sweden, then disassembled to be transported in the form of a module to its destination. The set weighs just under 5 tons, and transport is provided using two semi-trailers or two containers. “This brushing system is robust and weighs 800 kg, adds Gaël Minier. The standard machine has a draft of 3.2 m, but it is possible to adapt it according to the different depths of the ports. Hydraulic motors and hoses contain biodegradable oil so as not to pollute the water in the event of a leak. »

This process requires regular cleaning of the hull, the frequency of which depends on the type of water. For boats navigating on lakes or in cold waters such as those located in Sweden, it is necessary to wash the hull twice a year. In the waters of the Atlantic zone, the cleaning should be done between 6 to 7 times a year, and in warm waters like those of Miami, it should be done monthly. On the other hand, the process is not suitable for boats that have remained for example two years in the water and on the hull of which are glued 100 kg of mussels.

A washing station equipped with brushes to remove fooling on boats

Despite the need for this regular cleaning, this process nevertheless proves to be economical, according to Gaël Minier: “It does not cost more than the cost of the application of an antifooling paint carried out by the owner of his boat, because you have to count the cranage, the sanding and the painting. And it costs less than the professional solution of applying antifooling paint at a shipyard. In Les Sables-d’Olonne, unit washing costs between 40 and 210 euros depending on the size of the boats, and it is possible to subscribe to an unlimited number of cleanings per year for a price starting at 300 euros, for boats measuring 6 meters, to 1,750 euros, for those reaching 16 meters.

This cleaning takes a short time, about a quarter of an hour. It has the advantage of keeping the hull of boats permanently clean and thus saves fuel consumption. Currently, the machine is controlled by an operator using a wi-fi remote control, but the Swedish manufacturer is continuing its research and development work to make the station completely autonomous, like car wash stations.

Reduce water consumption in industry

Water is costly. All living beings need it to quench their thirst. However, people quickly realized that the seemingly limitless resource can also be used for many other purposes.

Gradually, water consumption in industry grew rapidly. At the same time, climate change means that water supplies are becoming scarce in many regions. Read here why companies need to reduce their consumption of this precious liquid and how this can be done.

Why climate change is causing water shortages

The fact that water regenerates itself again and again in nature is due to the ability of the air to hold water vapour. The amount of vapor depends on the air temperature. The warmer it is, the more moisture it can hold over open water and wet surfaces. Humid air is lighter than dry. It rises to higher layers of the atmosphere, is blown away by the wind and reaches places that are so cold that the air has to let go of the water again. It then falls back to earth as precipitation in the form of rain or snow. Global warming is increasing the water content in the atmosphere. To make matters worse, water vapor is one of the greenhouse gases and drives global warming. The earth is drying out more and more. The industry must adapt to reducing water consumption.

Water consumption in industry

The most effective way to reduce water consumption is where large amounts of this resource are used. This is the case when water is used as a solvent for surfactants, salts, acids and alkalis and as a means of transport for substances, mechanical energy and heat. It is used as a solvent on a large scale in the metal processing industry. There, water is a component of cooling lubricants that enable workpieces to be machined. Surface technology uses aqueous solutions to clean, pickle and coat parts. In the chemical industry, most of the water is used for cooling or heating the reaction mixture.

Ways to reduce water consumption

In order to reduce water consumption in industry, three main practices are used, depending on the area of ​​application:

  • closed water circuits
  • extension of downtimes
  • recovery from waste water
  • closed water circuits

Closed circuits are the means of choice when water is used as an energy source. The required temperature level decides which state of aggregation is required. Liquid water is used for cooling or heating in the range from 0 °C to 100 °C. Hot water can be used very well in heating circuits. For cooling water, it is more economical to release the heat extracted from the process to the environment via evaporation in cooling towers. In these open circuits, the evaporated water has to be replenished. Since the salt content of the water would continue to increase as a result of evaporation, it is also necessary to discharge a certain amount of water and replace it with fresh water. Water consumption is reduced if the desalination water is treated or used as process water.

Temperatures above 100 °C can be reached through the use of steam. As the steam gives off heat to the process, it usually condenses. The condensate can be returned and reused as boiler feed water.

Reduce water consumption in industry

Extension of downtimes

Water-mixed cooling lubricants and surface technology baths gradually lose their effectiveness over the course of use. They are therefore disposed of at certain intervals and replaced with a new batch. Water consumption can be significantly reduced if the service life is extended through maintenance measures. Water-mixed cooling lubricants can be maintained by regularly separating out tramp oils and filtering out fine chips and dust. This also applies to cleaning baths, in which the cleaning agents have to be added afterwards.

Recovery of the water from the waste water

Water consumption in industry can be significantly reduced if the waste water produced is treated and reused as service water. In wastewater treatment, valuable ingredients can often be recovered in addition to the water. Various processes are used for waste water treatment. It often takes place in several stages. Solids can be removed from the water with filters. Suspended matter can be flocculated. Skimmers and separators are used to remove oils. In addition, vacuum evaporation, ultrafiltration or reverse osmosis can be used for water treatment.

Vacuum evaporation

With vacuum evaporation, the heat is supplied at negative pressure. This results in a lower boiling point. The vapor then condenses at normal atmospheric pressure and a higher temperature. Due to the temperature difference, the evaporation heat can be recovered and fed into the process.

Ultrafiltration

With ultrafiltration it is possible to remove very small particles and macromolecules from the water. Membranes are used as the filter medium, the pores of which are adapted to the size of the substances to be removed.

Reduce water consumption in industry

Reverse osmosis

Reverse osmosis is a process in which natural osmosis is reversed using increased pressure. Natural osmosis is a process in which a solvent penetrates through a porous skin. Driving force is a concentration difference between solutions on both sides of this skin. The solvent penetrates into the area of ​​higher concentration until the resulting increase in pressure terminates the process or ruptures the skin. The process can be observed, for example, with ripe cherries that burst after a downpour. In reverse osmosis, stable membranes take over the task of the skin. The pressure is increased on the high concentration side until it exceeds the osmotic pressure. Then the solvent permeates through the membrane to the low concentration side.

Fungal infestation due to plant downtime

«Protect cooling lubricants from germs»

Water-mixed cooling lubricants are an ideal habitat for various fungi and bacteria. The microorganisms or their spores are ubiquitous. They get into the systems primarily through the air and through contact with human skin. Preservatives prevent many germs from multiplying. Others cannot tolerate oxygen and are deactivated by the circulation of the cooling lubricant. However, they come to life during a longer system downtime.

What do microorganisms do to cooling lubricants during system downtime?

Living microorganisms feed on components of the cooling lubricant, excrete metabolic products and multiply. During operation, the mixture of water and concentrate is constantly circulated. The intensive contact with the oxygen in the air and the effect of the preservatives prevent the metabolism of the organisms.

When the system is at a standstill, the liquid is still. Penetrated tramp oils collect on the surface, solid particles sink to the bottom. New conditions arise at the interfaces. Then the fungi and bacteria gather in the places that offer them comfortable conditions. Those who need oxygen stay on the surface. Those who are harmed by oxygen sink to the bottom. Fungi settle on the machine parts. When each has found its place, growth and reproduction begin.

Consumption of the cooling lubricant components

Water-miscible cooling lubricants are a carefully composed mixture of substances that fulfill very specific tasks:

  • Lubricants to reduce friction between tool and workpiece
  • Surfactants to form a stable emulsion of water and oil
  • Defoamers that suppress the foaming caused by surfactants
  • Inhibitors that ensure corrosion protection for machine parts and workpieces
  • Biocides to prevent the multiplication of germs

It is easy to understand that the whole system is no longer up to its task when individual components slowly disappear. In the event of a plant standstill, the degradation processes are intensified.

Test tube with fungal spores

Accumulation of metabolic products in the plants

The microorganisms break down chemical compounds into their components and convert them into other substances. Oils become carbon dioxide and water, and fragments of the long-chain compounds also remain. Strong-smelling hydrogen sulfide is formed from sulphur-containing molecules. Nitrogen compounds are converted to harmful nitrite.

The metabolic products accumulate in the cooling lubricant and throw the system out of balance.

Growth Of Biomass

The microorganisms themselves bring another problem. They form biofilms that clog the pipelines and parts of the systems can stick together. Initially, these are greasy, barely perceptible deposits of germs and metal abrasion. If countermeasures are not taken, biofilm mats develop over time that can be several centimeters thick. If this happens when the systems are at a standstill, they can no longer be commissioned properly.

Why not use effective biocides that kill all microorganisms – even when the system is idle?

The effectiveness of biocides depends on their concentration and their ingredients. It should be borne in mind that these are poisons that can also be dangerous for humans. Therefore, these substances are subject to the strict regulations of the Biocide Ordinance.

The permitted ingredients usually act selectively. That is, some kill fungi, others bacteria or algae. If the system is idle for a long time, germs can creep in that are not caught by the preservatives used.

As few biocides as possible are used. The concentration must be just sufficient to kill the target organisms. If the composition of the cooling lubricant changes, this also affects the biocide concentration. If it falls below a certain limit, individual germs can get used to the substances and develop resistance. Then the preservative no longer works.

Man with canister - he's wearing protective gloves

How can cooling lubricant emulsions be protected from infestation?

The concentration specified by the manufacturer must be strictly adhered to when preparing the water-miscible cooling lubricants. Then the preservative develops its full effectiveness. During operation, the composition must be checked regularly and the preservative must be replenished according to the manufacturer’s instructions. Special conservation measures are required before a longer system downtime. If a longer standstill is planned, contacting the manufacturer will help to find suitable means for preserving the systems.

The cooling lubricant concentration can best be determined with a refractometer. Depending on the result, the concentration is brought back into the required range by adding water or concentrate.

In addition to the concentration, the pH value and the nitrite content can be determined. Test strips that are dipped into the liquid are available from specialist retailers for both values. The discoloration of the indicator fields on the strips is compared with a scale on which the pH value or nitrite concentration can be read.

If it contains nitrite, if the pH value is below 7 or if the appearance and smell have changed, germs have probably developed. A suitable disinfectant should then be requested immediately from the manufacturer. If the microorganisms multiply in the systems for a longer period of time, the cooling lubricants cannot be brought back into a usable condition.

To prevent contamination, cooling lubricants must always be mixed with fresh drinking water. Regular machine maintenance and the ongoing separation of chips and foreign oils from the cooling lubricants in filters or separators are essential to protect against fungal infestation and germ infestation and also improve corrosion protection.

What to do if the cooling lubricant emulsion is contaminated after a system standstill?

If the cooling lubricant emulsion has “tipped over”, the only thing that will help is completely emptying the system, using system cleaners and thorough mechanical cleaning. Particular importance should be attached to the elimination of biofilms.

The main cause of film formation is the fungal attack on a system. The fungi grow on the surfaces of the plant components. They are often not detectable in the liquid. Other microorganisms, dust and metal debris accumulate on the fungal cultures. If the biofilms are not completely removed, the system will be contaminated again shortly after refilling. Cooling lubricant manufacturers have special chemical system cleaners available for cleaning systems after fungal infestation, which can also reach places that cannot be reached by mechanical means.

SOLVENT-BASED CLEANERS

The effort to get a plant ready for operation, in which germs have spread during a longer standstill, is considerable. Machine care, care of the cooling lubricants and preventive measures in the case of foreseeable system downtimes can avoid this effort.

How to protect a classic car against corrosion and restore the paintwork?

The classic car market has experienced phenomenal growth in the last ten years. A new record was set in August 2017 – Aston Martin DBR1 from the 1950s was auctioned for USD 22.55 million (PLN 91.62 million). In 2018 alone, around 30,000 jobs were delivered to Europe. classic American cars, which clearly shows that this extremely dynamic market needs the help of experts.

Standox, a paint brand from the German city of Wuppertal, has an established position as a professional partner for workshops specializing in classic car restoration. At the same time, in times of economic uncertainty, many people are looking for something specific to allocate funds. Therefore, over the past decade, the value of investments in cars has far exceeded the value of investments in coins, diamonds and old wine. This trend is an ideal opportunity for garages to improve their classic car restoration skills and develop in this market segment.

Olaf Adamek, Standox Brand Manager for Europe, Middle East and Africa – Renovation of classic cars requires both extensive technical knowledge and qualified employees. However, it can be a very lucrative source of income for workshops. The customer community is large, compact and resilient to economic changes. They are often people with extensive general knowledge about classic car restoration, who require professional help from workshops in the field of painting. They must feel that their valuable acquisition is in good hands.

When choosing the best method of restoring a classic car, you need to pay attention to details. Sometimes an order to remove a bit of rust turns into a complete renovation with painting the entire body. Therefore, access to professional support and the right products is the key to success.

Corrosion: the number one enemy of automotive classics

How to protect a classic car against corrosion

The main difference between the paint restoration of a classic car and a modern car is protection against corrosion. Until the 1980s, bodywork was mainly made of sheet metal, which is very susceptible to moisture.

Harald Klöckner, Standox Training and Technical Service Leader EMEA – There is no doubt that getting a complete repair quote is crucial. Once we come to an agreement with the customer on this topic, the main task of the painter is to protect the historic car against corrosion. First of all, it is necessary to ensure that the putty does not come into contact with the bare sheet metal, and to limit the risk of corrosion during the preparation of the substrate. Always use a thin insulating layer between the sheet metal and the putty. Otherwise, the putty acts like a sponge and absorbs water, which then ends up in the metal.

Standox recommends a three-step approach – after the surface has been properly prepared, insulate the sheet metal with a Standox acid-curing primer such as Etching Adhesion Primer U3100 and a VOC filler such as VOC Xtra Filler U7560. Of course, the specifications of the respective paint system must be followed. The VOC filler isolates sanding marks and pores, and helps to even out the surface, making it an ideal base for the topcoat.

Perfect color match

How to protect a classic car against corrosion

As in the case of refurbishing new cars, the digital color management process significantly facilitates color matching in classic cars and improves the accuracy of the entire process. Refinishers have Standox digital color tools at their disposal, such as the Genius iQ spectrophotometer and Standowin iQ software, to perfectly match the color and recreate the original shade and effect of a classic car.

When there is very little original paint left on the body of a classic car due to extensive damage, when the car has been re-painted and the original color has long since been lost under newer coats, or when the color code is unknown, Standox helps the workshop with every step of the color matching and uses its expertise in area of ​​car restoration to help pick the correct color.

– Thanks to the advanced technology of the Genius iQ spectrophotometer and Standowin iQ software, workshops have access to over 200,000 constantly updated color recipes, allowing them to perfectly match color every time. All information is transmitted wirelessly to the scale, explains Harald Klöckner.

Resources and technical support

– In addition to the practical support that our customers can count on, we also provide a wealth of technical knowledge online so that refinishers can develop their skills, adds Harald Klöckner.

Standopedia is Standox’s online guide that provides refinishers with technical information and expert advice on a variety of painting issues, such as refinishing special colors or using new products. Standox also offers an extensive collection of Standothek technical guides that provide practical information for refinishers who wish to develop their skills in classic car restoration.

– Classic car owners have a great passion for their cars, and if the car has been repaired well, the owner will probably come to the workshop with the rest of the cars. Workshops offering a personalized and professional service gain customer loyalty, gain an appropriate reputation on the market and develop their business – summarizes Olaf Adamek.